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Abstract 

New methods of analytical hydrodynamics are developed for studying the exis-

tence, smoothness, and structure of solutions of Navier-Stokes equations. The sub-

ject of this work is the laminar (regular) flows of a viscous incompressible liquid 

considered on general-entropy manifolds. Hydrodynamic flows support two sym-

metries: a conservation of the general entropy and a duality of the impulse. Several 

theorems and lemmas are presented for analysis of structures of regular flows. The 

main result is the separation theorem that reduces Navier-Stokes equations to the 

two sets of equations, the canonical system of equations of the acceleration poten-

tial and the equations of the vortex flux. It is shown that laminar flows contain po-

tential and vortical components.  

  

Introduction 

At the present time, Navier-Stokes equations are attracting significant attention of 

scientists working in the area of analytical hydrodynamics. In the theory of Navier-

Stokes equations, starting from the work by Leray [4], main efforts have been devoted 

to "weak" (turbulent) solutions [1, 3, 11, 12]. However, knowledge of the structure and 

properties of the solutions of Navier-Stokes equations remains rather limited. Bringing 

new ideas and methodologies into analytical hydrodynamics will help to advance this 

science. 

A new concept and mathematical tools for continuum media have been developed 

by Panchenkov [7-10]. In this article, the general-entropy analysis is applied for study-
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ing Navier-Stokes equations. Two main problems are addressed: an investigation of the 

structure of laminar fields and flows of a viscous incompressible liquid and a separation 

of Navier-Stokes equations into two systems. At the same time, a new, effective 

mathematical technique based on the general entropy concept is developed. 

The set of axioms of ttie general-entropy theory of Navier-Stokes equations 

identifies a viscous incompressible liquid as an object of the general-entropy 

conceptual model [7]: 

(1) Navier-Stokes equations are the equations of the general-entropy conceptual 

model. 

(2) States of a viscous incompressible liquid satisfy a global symmetry of the 

conservation of the general entropy. 

(3) Continuum medium of a viscous incompressible liquid contains two types of 

objects: hydrodynamic fields and hydrodynamic flows. 

(4) Hydrodynamic flows are located on the general-entropy manifolds. 

(5) There are two types of hydrodynamic fields: vorticity fields and potential fields. 

(6) There are two types of hydrodynamic flows: laminar flows and turbulent flows. 

(7) Turbulence is a type of chaos. 

(8) Laminar flows possess smoothness (regularity) and are realized on real 

geometrical objects-the general-entropy manifolds. 

 

Main Objects 

 
A basic geometrical object in the general-entropy theory is a phase space, which is 

a smooth manifold with local coordinates q  and p , 

{ }3
3

3p
3

qpq RR;R;R;|p,q ⊕=Λ⊂Λ⊂ΛΛ×Λ=Λ=Λ  , 

where q  is the generalized coordinate, p  is the impulse, 3R  is the three-dimensional 

real Euclidean space, and 3R  is the conjugate three-dimensional real Euclidean space. 

The phase space is formed by a configuration apace, { }3
qq R|q ⊂Λ=Λ , and an im-

pulse space, { }3pp R|p ⊂Λ=Λ .  

The general entropy has dual representation [7] 

{ } Λ∈Η+Η=Η p,q;pqf ,    (1) 
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where qΗ  is a structural entropy and pΗ  is an impulse entropy. In thermodynamic in-

terpretation,  the  general entropy fΗ  contains the classical thermodynamic entropy 

TH , and T q pH H H= − =& & &  in dissipative systems [7]. States of a continuum medium in 

the phase space maintain the global symmetry 

constf =Η .      (2) 

This symmetry follows from the principle of the general-entropy maximum applied to 

the Boltzman concept of entropy [7]. The principle of the general-entropy maximum on 

a set of regular solutions in a Hubert space is adequate to Hamilton principle. 

A reduction of the phase space that satisfies Eq. (2) is a general-entropy manifold 

{ }f,|p,q ΗΛ⊂Ε=Ε .    (3) 

The general-entropy manifold has a structure of the direct product 

pq Ε×Ε=Ε ,        (4) 

{ } { }pppqqq ,|q;,|q ΗΕ⊂Ε=ΕΗΕ⊂Ε=Ε . 

where qΕ  is the general-entropy manifold of the configuration space and pΕ  is the 

general-entropy manifold of the impulse space.  

A solenoid manifold is obtained by imposing divergence on the general-entropy 

manifold 







∂
∂

∂
∂

=ΑΑ=σ
t
p,

t
q;div ,    (5) 

{ }Α=σΕ⊂Μ=Μ div;|p,q . 

The following equation supports the symmetry (2) on the solenoid manifold [7]: 

{ } Μ∈=σ p,q;0 .      (6) 

Introduction of ancceleration potential, Θ , leads to the another reduction of the gen-

eral-entropy manifold, a manifold of the acceleration potential with metric ξ , 
















 −
=ξΘΜ⊂= ππ

01
10

;;|p,q .   (7) 

On this manifold the canonical equations of the acceleration potential are held [7] 

{ } π∈
∂
Θ∂

=
∂
∂

∂
Θ∂

−=
∂
∂ p,q;

qt
p;

pt
q .   (8) 
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A reduction of the manifold of the acceleration potential that contains the impulse 

potential is an important concept in our theory. This sub-manifold is a Hubert field and 

it has a form 

 { }Ψ⊂Ζ=Ζ π;|p,q .     (9) 

On a Hilbert field ( )t,q;gradp Ψ=ΨΨ= , and the equation for the acceleration poten-

tial [6,7] is  

{ } Ζ⊂Θ=
∂
Ψ∂ p,q;
t

.     (10) 

The  second important symmetry in our theory is a dual representation of the im-

pulse 

[ ]



∈Ε∈
Λ∈

=
T,0t;q;)t,q(p

p
p

q

p     (11) 

The first component of this duality is a free impulse, and the second component defines 

a bound impulse. The bound impulse is realized when the following diffeomorphism 

exists: 

( ) ( ) ( )T,0;Ct,qp;: q
T
q

T
qpqs ×Λ=ΛΛ∈Λ→ΛΤ ∞ , 

where T  is the time of destruction of a laminar flow. 

 

Theory Development 

 
Using Helmholtz decomposition theorem [2], a laminar flow on a general-entropy 

manifold can be taken in the form 

[ ]T,tt;q;0udiv;pu:uq q ∈Ε∈=ω+==&  , 

( )T
qq C;rot;q;)t,q( Λ∈ΒΒ=ωΕ∈ω=ω ∞  , 

[ ]



∈Ε∈
Λ∈

=
T,0t;q;)t,q(p

p
p

q

p , 

( )T
qC;)t,q(;gradp;)t,q(pp Λ∈ΨΨ=ΨΨ== ∞  , 

pqE : Ε→ΕΤ .    (12) 

In a laminar flow described by Eq. (12), the key role is played by the hypothesis of 

the vorticity independence on the impulse 

( ) { } ( )T,0;t,p,q;t,q TT ×Λ=ΛΛ∈ω=ω .   (13) 

The equation of hydrodynamic fields in the configuration space is 
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qq;0udiv Λ∈= .      (14) 

Let’s introduce an extension of these fields into the phase space  

{ } { }{ }pq p;p,q;0divq;0udiv Λ∈Λ∈=ω→Λ∈= .    (15) 

Upon this transformation, the impulse becomes free. Only the vorticity field, independ-

ent of the free impulse, will exist in the phase space. This fact confirms the hypothesis 

of independence (13). From Eqs. (13) and (14), it follows that a laminar flow maintains 

two types of hydrodynamic fields, vortical and potential: 

qq;rot;B Λ∈ω=ΩΩ−=∆ , 

qq;0 Λ∈=∆Ψ , 

where Β  is the vortical three-potential and Ψ  is the impulse potential. 

Two theorems of the necessary conditions for the existence of a laminar flow are 

now formulated. 

First Theorem. On the general-entropy manifold  

{ }fpq ;;|p,q ΗΕ×Ε=ΕΛ⊂Ε=Ε  

of the phase space  

{ }3
3

pqpq RR;p;q;|p,q ⊕⊂ΛΛ∈Λ∈Λ×Λ=Λ=Λ  

 the necessary conditions for the existence of the laminar flow  

{ } [ ]T,0t;p,q;0udiv;rot;pu:uq ∈Ε∈=Β=ωω+==&  

that satisfies the independence provision 

( ) qq;t,q Ε∈ω=ω  

are the following 

(1) The existence of the vorticity three-potential 

( ) ( )T,0:C q
T
q

T
q ×Λ=ΛΛ∈Β ∞  

that satisfies Poisson equation  

qq;rot; Λ∈ω=ΩΩ−=∆Β . 

(2) The realization of the free impulse pp Λ∈ in the form of a function  

[ ]( )T,0Cp ∞∈  on [ ]T,0 . 

Second Theorem. On the general-entropy manifold of the configuration space 

{ }qqqq H;|q Λ⊂Ε=Ε , { }3
qq R|q ⊂Λ=Λ  

 the necessary conditions for the existence of the laminar flow  
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[ ]T,0t;q;0udiv;gradp;rot;pu:uq q ∈Ε∈=Ψ=Β=ωω+==&  

that satisfies the independence provision 

( ) qq;t,q Ε∈ω=ω  

are the following: 

(1) The existence of the vorticity three-potential 

( ) ( )T,0:C q
T
q

T
q ×Λ=ΛΛ∈Β ∞  

 that satisfies Poisson equation  

qq;rot;B Λ∈ω=ΩΩ−=∆ . 

(2) The existence of the impulse potential ( )T
qC Λ∈Ψ ∞  that satisfies Laplace equation  

qq;0 Λ∈=∆Ψ . 

The next theorem contains the main result.  

Separation theorem. If on the solenoid manifold  

{ }ΑΕ⊂Μ=Μ div;|p,q , 

{ }qqqpq |q; Ε⊂Μ=ΜΜ×Μ=Μ , 

{ } 0div;
t
p,

t
q:|p ppp =Α





∂
∂

∂
∂

=ΑΕ⊂Μ=Μ  

of the phase space  

{ }3
3

pqpq RR;p;q;|p,q ⊕⊂ΛΛ∈Λ∈Λ×Λ=Λ=Λ  

the laminar flow exists  

0udiv;rot;pu:uq =Β=ωω+==&  

{ } ( ) ( )T,0:Cp, q
T
q

T
q ×Λ=ΛΛ∈Β ∞  

that is described by Navier-Stokes equations  

{ } ( )Du grad rot f ; q, p M; t 0,T
Dt

ν= − Π − Ω + ∈ ∈  

and  

(1) the external force has a form 

( )( )T,0Cf;rotgradf qff ×Μ∈Ω+Φ= ∞ , 

(2) the condition of independence is fulfilled 

[ ] ( )( )T,0C;gradp q ×Μ∈ΦΦ=Ω× ∞ , 

then Navier-Stokes equations can be separated into the two sets of equations: 
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(1) The canonical set of equations for the acceleration potential: 

{ } π∈
∂
Θ∂

=
∂
∂

∂
Θ∂

−=
∂
∂ p,q:

qt
p;

pt
q , 

3

2
p p fR

1 u ;
2

Θ = − − Π Π = Π − Φ − Φ , 

[ ] ( )( )T,0C;gradp q ×Μ∈ΦΦ=Ω× ∞ , 

( )T
qq C;q;0 Λ∈ΘΛ∈=∆Θ ∞ .    (16) 

(2) The vortex flux equations: 

[ ] frot
t

Ω+ω∆ν+Ω×ω=
∂
ω∂ , 

( ) ( )( )T,0C;q;rot;rot| qR
2

R 33 ×Μ∈ωΜ∈ω=ΩΩω=Ω ∞ .  (17) 

Proof. The full time derivative in Navier-Stokes equation is 

Du u u
Dt t ξ

∂
= + ∠

∂
, 

where Lie derivative is defined as 

( ) ugrad|uu 3R=∠ξ , 

where 

( ) [ ]Ω×−= uugrad
2
1ugrad|u 2

RR 33 .   (18) 

For a laminar flow the following representation of the vector product is valid: 

[ ] χ+Φ=Ω× rotgradu . 

Invoking the hypothesis of the vortex independence on the impulse, Eq. (18) can be 

separated into the two equations: 

( ) [ ] Φ=Ω×ω=ω gradp:t,q ,    (19) 

[ ] χ=Ω×ω rot .      (20) 

Accounting for Eq. (19), Lie derivative becomes 

[ ]( )Ω×ω−+





 Φ−=∠ξ gradugrad

2
1u 2

R3 .  (21) 

This structure allows us to obtain the equation for the impulse from Navier-Stokes 

equations 

p
2

R
gradugrad

2
1

t
p

3 Π−−=
∂
∂ ,    (22) 

fp Φ−Φ−Π=Π . 
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Let us also consider the equation of a laminar flow 

ω+==
∂
∂ pu;u

t
q .    (23) 

Since a manifold of the acceleration potential is located on a solenoid manifold, the 

system of Eqs. (22) and (23) can be interpreted as the canonical equations of the accel-

eration potential. In this interpretation, the acceleration potential satisfies the following 

equations: 





 Π+

∂
∂

−=
∂
Θ∂

p
2

R3ugrad
2
1

qq
, 

ω+=−=
∂
Θ∂ pu;u
p

. 

The solution of this system recovers the acceleration potential 

{ } π∈Π−−=Θ p,q:ugrad
2
1

p
2

R3 . 

This acceleration potential forms the canonical system of equations of the theorem. 

Now, let us take into account  

qq;0pdiv Λ∈= . 

Then the equation for the field of the acceleration potential is obtained from the second 

equation of the canonical system: 

( )T
qq C;q;0 Λ∈ΘΛ∈=∆Θ ∞ . 

Combining rotor terms in Navier-Stokes equations, the equation for the vortical flux is 

[ ] frot
t

Ω+ω∆ν+Ω×ω=
∂
ω∂ .    (24) 

From Eq. (20) it follows 

[ ] 0div =Ω×ω , 

which together with a continuity equation gives the equation of the theorem 

( ) 33 R
2

R
rot| Ωω=Ω . 

The theorem is proven.  

Several notes to the theorem: 

1. The vorticity Eq. (24) can be transformed into Helmholtz equation 

( ) ( ) frotrotgrad|grad|
t

Ω+Ω∆ν+Ωω−ωΩ=
∂
Ω∂ .   (25) 
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2. The most complete and systematic study of vortical flows of a viscous incom-

pressible liquid on the base of Eq. (24) has been carried out in [5]. 

3. It is important that the canonical system of the acceleration potential is given on 

a manifold of the acceleration potential, while the vorticity equations are given on a 

solenoid manifold of the configuration space. 

4. In the hypothesis of independence, the vortex flux equations do not 

depend on the impulse, and the vortex enters the equation for the 

impulse flux as an external flux. 

Several facts following from the separation theorem are summarized in the next 

lemma. 

Lemma. On a Hilbert field  

{ }Ψ⊂Ζ=Ζ π;|p,q  

(1) The bound impulse is 

( )T
qC;gradp Λ⊂ΨΨ= ∞  

(2) The potential lamina flow describes the equation of the acceleration potential 

Θ=
∂
Ψ∂
t

, 

3

2
pR

1 u
2

Θ = − −Π , fp Φ−Φ−Π=Π , 

( )T
qq C;q;0 Λ∈ΘΛ∈=∆Θ ∞ . 

(3) The potential of the independence equations 

[ ] ( )( )T,0C;gradp q ×Μ∈ΦΦ=Ω× ∞  

is orthogonal to the impulse potential 

( ) 0grad|grad 3R =ΦΨ . 

Let us now look at the symmetry of the dual representation of the impulse (Eq. 11). 

If a solenoid manifold contains a free impulse, Hamiltonian ( ) pp;t,p,q Λ∈Η=Η , 

and the sidelong metric, then another subset can be constructed - a characteristic sur-

face: 

















−

=ξΗΛ∈⊂Σ=Σ
01
10

;;p;M|p,q p . 

The phase flux on the characteristic surface is determined by the following theorem. 

Theorem. Upon the impulse release 
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( ){ } { }pq pq;t,qpp Λ∈→Λ∈=  

the acceleration potential transforms into Hamiltonian 

{ } { }{ }Λ∈Η→Λ∈Θ p,q,q, q , 

and on the characteristic surface 

















−

=ξΗΛ∈⊂Σ=Σ
01
10

;;p;M|p,q p  

the potential laminar flow is described by Hamilton canonical equations 

{ } Σ∈
∂
Η∂

−=
∂
∂

∂
Η∂

=
∂
∂ p,q;

qt
p;

pt
q , 

( )3

2 T
p qR

1 u ;u p ; C
2

ω ∞Η = + Π = + Η ∈ Λ , 

( ) ( )T
qpfppp C;:t,q Λ∈ΠΦ−Φ−Π=ΠΠ=Π ∞ .  (26) 

Proof. For a free impulse 

dt
dp

t
p

=
∂
∂  

and accounting for the property 

dt
dq

t
q

=
∂
∂  

vector А on the characteristic surface will be 







∂
∂

∂
∂

=Α
t
p,

t
q . 

On a manifold with the sidelong metric, this vector nullifies the divergence invariant 

0:div =σσ=Α  

by the gradient condition 

{ } Zp,q;

q

p;gradA;
t
p,

t
q

∈

∂
Η∂

−

∂
Η∂

=ΗΗ=





∂
∂

∂
∂

=Α .   (27) 

Equation (27) is another form of Hamiltonian canonical equations.  

Theorem is proven.  

There is a connection between the acceleration potential and Hamiltonian 

pp Ω∈
Θ=Η - .     (28) 
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However, one cannot always identify Hamiltonian with the acceleration potential taken 

with an opposite sign. These concepts are the base elements of two different methods 

for describing laminar flows, and Eq. (28) is the equation relating these methods. 

 

Concluding remarks 

 
The most important result of the general-entropy analysis is the separation theorem 

that contains a reduction of Navier-Stokes to the two sets of equations: the canonical 

system of the acceleration potential and the system of the vortex flux. These equations 

create a foundation for new, effective mathematical methods for analytical hydrody-

namics, including problems of the existence, smoothness, and structure of solutions of 

Navier-Stokes equations. This work also contains an important methodological fact: 

laminar flows have vortical and potential components. 
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